

SADA Policy Forum

Charlie McElhone & Susannah Tymms

CLIMATE TARGETS

Australian Government

- 26-28% reduction by 2030 on 2005 levels
- Net zero by 2050 pledged

Fonterra

30% reduction by 2030 and net zero by 2050

Nestlé

• 50% reduction by 2030 and net zero by 2050

Unilever

• 50% reduction in GHG emissions for products by 2030 and net zero emissions for all products from source to point of sale by 2039

ADIC target: 30% reduction in emissions intensity, across both farm and manufacturing, by 2030 (relative to 2015 baseline)

> International dairy sector declaration: Pathways to Dairy Net Zero (commitment to action)

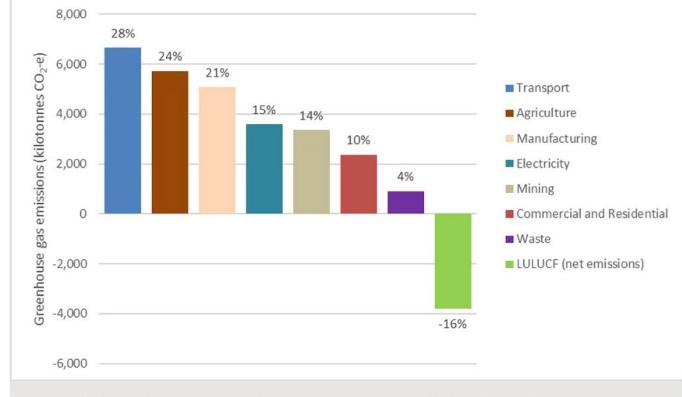


Figure 3: South Australia's greenhouse gas emissions in the 2019 financial year, by key economic sector. Source: Australian Greenhouse Emissions Information System, Department of Industry, Science, Energy and Resources.

(a) Global surface temperature change Increase relative to the period 1850–1900

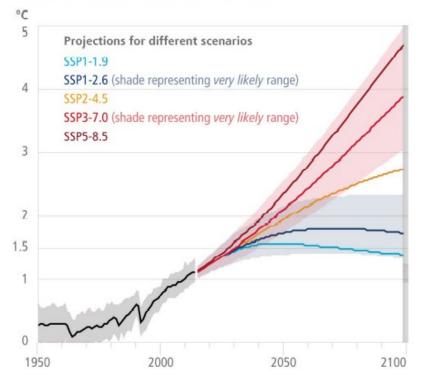
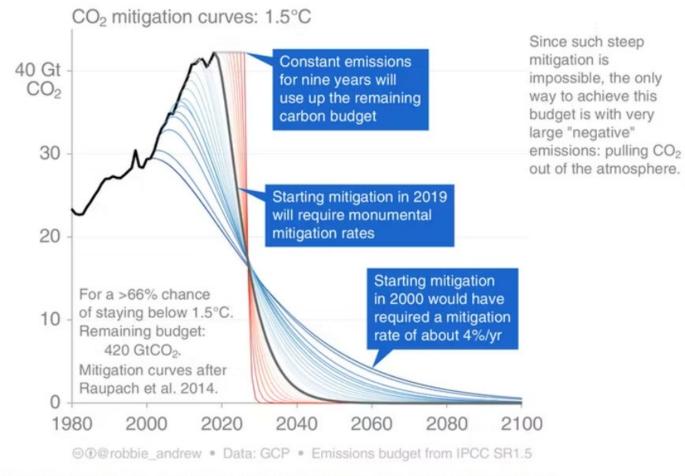



Figure 1: Global surface temperature changes in °C relative to 1850–1900. {TS.4.a}

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE SIXTH ASSESSMENT REPORT 2022

IPCC, 2022: SUMMARY FOR POLICYMAKERS [H.-O. PÖRTNER, D.C. ROBERTS, E.S. POLOCZANSKA, K. MINTENBECK, M. TIGNOR, A. ALEGRÍA, M. CRAIG, S. LANGSDORF, S. LÖSCHKE, V. MÖLLER, A. OKEM (EDS.)]. IN: *CLIMATE CHANGE 2022: IMPACTS, ADAPTATION, AND VULNERABILITY.* CONTRIBUTION OF WORKING GROUP II TO THE SIXTH ASSESSMENT REPORT OF THE INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE [H.-O. PÖRTNER, D.C. ROBERTS, M. TIGNOR, E.S. POLOCZANSKA, K. MINTENBECK, A. ALEGRÍA, M. CRAIG, S. LANGSDORF, S. LÖSCHKE, V. MÖLLER, A. OKEM, B. RAMA (EDS.)]. CAMBRIDGE UNIVERSITY PRESS. IN PRESS.

SSP = an emissions scenario and likelihood of adaptation

Graph demonstrating how fast mitigation has to happen to keep to 1.5°C. © Robbie Andrew, CC BY

"Societal choices and actions implemented in the next decade determine the extent to which medium- and longterm pathways will deliver higher or lower climate resilient development (*high* confidence)."

IPCC Sixth Assessment Report 2022

	Gippsland	Murray Dairy	WestVic	DairyTas	South Australia	NSW	SDP	Western Dairy
Temperature increase	1°-1.7°	1.2°-1.8°	1°-1.6°	0.5°-1.5°	1°-1.6°	1.2°-2°	1°-2°	1°-1.7°
Season of greatest warming	Summer	Summer	Summer	Summer/a tumn	^u Summer	Summer	Spring	Summer
% decrease in rainfall (range)	-3% (-10% - +5%)	-3% (-10% - +5%)	-5% (-15% - +3%)	-5% (-15% +0%)	-5% (-17% - +3%)	0%	-5%	-15% (-22% - -7%)
Variability of rainfall	Winter, Spring decrease	Winter, Spring decrease	Autumn, Winter, Spring decrease	Spring Summer decrease	Winter, Spring decrease	Little change	All seasons decrease (south)	All seasons decrease (esp Spring)
% time in drought (historical)	45% (33%)	46% (33%)	55% (38%)	53% (33%)	50% (40%)	38% (35%)	43% (35%)	62% (45%)
Soil moisture decline	-8% to -2%	-7% to -1%	-5% to -1%	-6% to -1%	-5% - 0%	-7% - -2%	-5% to -1%	-7% to 0%

CSIRO 2016: Climate change impacts on dairy farm regions out to 2040

Dairy Australia

CLIMATE WILL CONTINUE TO DRAG PRODUCTIVITY

CSIRO report considered current policies and 'delayed transition' scenario and the implications for agriculture sector:

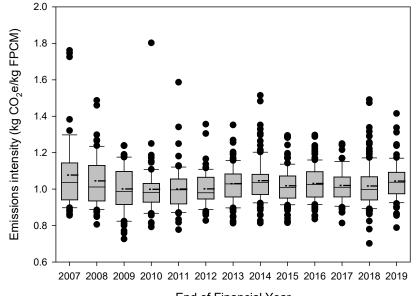
- •Agriculture production will decline (10-15% difference)
- Impacts will vary across locations

•Increased demand combined with adaptation and resilience measures can mitigate economic impacts for crop and livestock production

•Note: Shifts in rainfall not included in analysis of chronic/acute impacts

Source: CSIRO 2022 Exploring climate risk in Australia https://ecos.csiro.au/calculating-the-costs-of-net-zero-emissions/

Enteric methane	58%
Waste methane	10%
N ₂ O direct voided onto pasture	4%
N₂O manure spread inc indirect	3%
N₂O N fert direct	4%
Electricity	6%
Diesel	2%
Concentrates	8%
Fodder	2%
Fertiliser	3%


Source: Christie, K. 2020. Analysis of dairy farm greenhouse gas emissions data (DairyBase).

Measured emissions intensity change over time (Dairybase analysis)

Full dataset

						\frown				
Year	SE Vic	SW	Nth	Sth	Nth	SA	TAS	WA	Aus	No.
		Vic	Vic	NSW	NSW	/ \			wide	farms
FY 2007	1.12	0.99	1.14						1.08	45
FY 2008	1.07	1.04	1.03		/				1.05	63
FY 2009	1.01	1.00	1.02						1.01	61
FY 2010	1.00	0.98	1.06						1.01	56
FY 2011	0.98	1.02	0.99						1.00	62
FY 2012	1.00	1.01	0.99						1.00	64
FY 2013	1.03	1.01	1.01	1.06	1.14	0.94			1.03	90
FY 2014	1.02	1.02	0.99	1.04	1.19	1.08	1.02	1.07	1.05	124
FY 2015	1.00	1.01	0.98	1.01	1.16	0.97	0.94	1.04	1.02	138
FY 2016	1.03	1.02	0.99	1.01	1.13			1.01	1.03	124
FY 2017	1.01	1.00	1.05						1.02	69
FY 2018	1.01	1.04	0.98	1.04	1.16	1.00	0.94	1.03	1.02	181
FY 2019	1.04	1.08	1.01				1		1.04	74
Average	1.02	1.02	1.02	1.03	1.16	1.00	0.97	1.04	1.03	1,149
						∇				

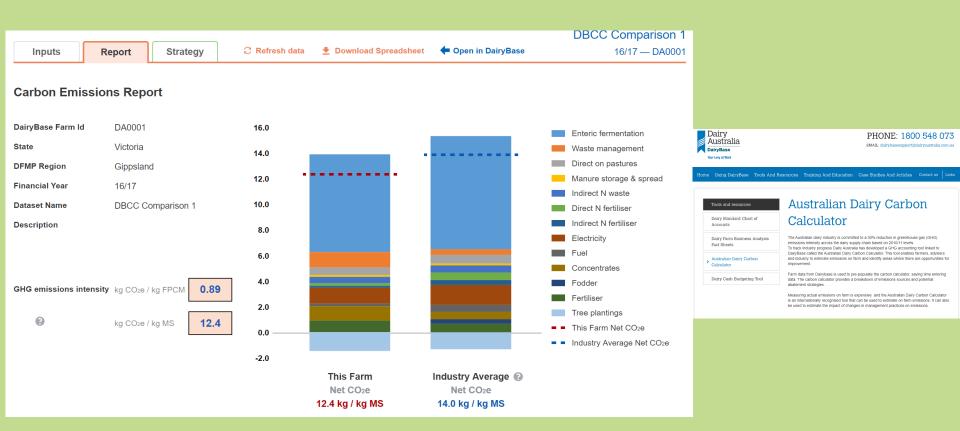
End of Financial Year

MITIGATION - UNDERPINNING RESEARCH TO REDUCE ON-FARM EMISSIONS

- **Marginal Abatement Cost Curve** (roadmap for emissions reduction for the dairy industry; calculates cost of abatement over lifetime of measures: in development)
- Update to carbon calculator and increase adoption (to accumulate industry-level data for market assurance, government accounts and to better target on-farm management strategies)
- Promote options to reduce emissions (particularly those with productivity co-benefits)
- Identify innovations in enteric methane research (open call grant process)
- Low-methane cows (DairyBio animal breeding program)

DO NOW

DO IN 5 YEARS



- Animal management
 (health/fertility/heat stress/herd longevity)
- **Breeding** (genetic gain in plants/animals)
- Supplements/diet manipulation (oils/tannins e.g. grape marc)
- Legumes (Leucaena, Lucerne, Vetch, Lotus)
- Good practice effluent, drainage, soil, and fertiliser management
- Energy efficiency and use of renewables
- Tree plantings, e.g. shelterbelts
- Supply chain expectations....
 - Know your baseline (ADCC)

- Vaccine
- Methane inhibitors (seaweed, 3-NOP)
- Early life programming
- Wearable devices?
- Further breeding innovations

DAIRYBASE CARBON CALCULATOR

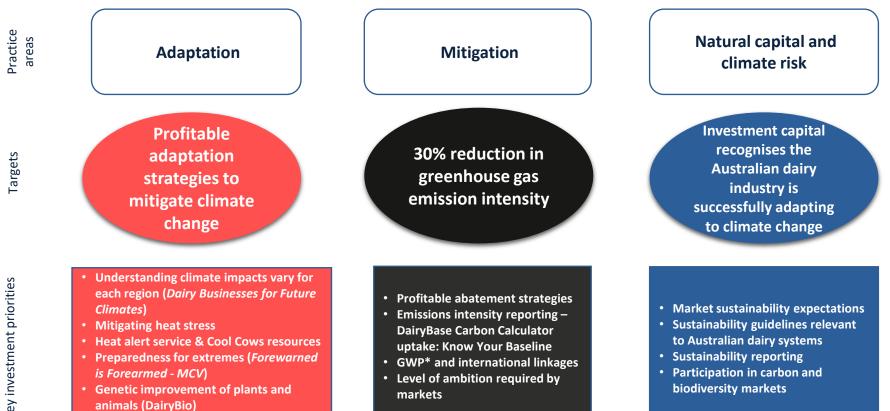
Dairybase Carbon Calculat	or × +			
otmail 🜀 Google (2)	Ġ Google 🧏 Librar	y 🔹 Phone & Email 🚺 Suggested Sites	🐝 UTAS Webmail	📙 Thesis 📙 Imported 🚪
ቀ Dataset List		DairyBase Carbon Calculator	🚱 dairybase	e.com.au 😧 📓 💄 Karen Christie
				actice farm version 5 ADCC
Inputs R	strategy	② Refresh data	🔶 Open in DairyBase	21/22 — DA0001
Strategies for m	anagement of carbo	n emissions		
Carbon emission t	type	Strategy resources		
This Farm	Industry Average			
Enteric fermentation				
		Herd management		
		Feed efficiency		
		Diet manipulation		
		Animal management		
Animal waste		1000		
		Effluent management		
		Methane digester		
Manure storage & sp				
manure storage & sp	e e e e e e e e e e e e e e e e e e e	Fertiliser management		
Nitrogen sources				
		Drainage management		
		Soil management		
Electricity & Fuel				
		Dairy shed management		
		Irrigation efficiency		
		Use of renewables		
Indirect feed & fertilis	ser			
		Reducing embedded emissions	through resource use e	fficiency
		Waste management		

Strategy tab

•

- Breakdown of each source of emissions
- Comparing results to industry average
- List of strategy resources
- Hyperlinked to resources

Herd and breeding management can reduce enteric methane emissions and methane and nitrous oxide emissions from dung and urine. Strategies include:


- · Extending herd longevity to reduce replacement rates.
- Identifying and culling less productive animals.
- · Getting cows in calf, on time, every time.

Dairy Australia In Calf

Getting herd and breeding management right

close

Program logic behind the **DA Climate Change RD&E Strategy 2020-25**

Policy development considerations/opportunities

- Adaptation
 - On-farm measures to counter physical climate risk and bolster farm productivity
- Mitigation
 - Role of different GHGs e.g. methane
 - Ambition of ADIC target in Sustainability Framework
 - Driving uptake of footprinting/baseline numbers at farm level
 - Emissions reduction farm action plans
 - Participation in carbon markets

Key resources 2021/22:

- Marginal Abatement Cost Curve
- Australian Dairy Carbon Calculator
- Energetics adaptation scenario modelling
- Scientific consensus on methane (MLA)

Key advocacy audience: markets, consumers, investors, banks and governments

How can DA support SADA policy development?

- MJA Productivity study pointing to R&D
- BDO multipliers detailing economic contribution
- Carbon & Biodiversity Markets webinar

